Reaction-rate results are presented for $\mathrm{CO}_{2}$ in the range $1200-2400^{\circ} \mathrm{C}$ interacting with graphite of grades VPP, MPG-8 (1), and pyrographite.

Graphite is a high-temperature constructional material, and its working capacity may be limited by interaction with gases such as $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{O}_{2}$, NO, etc. In some cases one has to perform engineering calculations on the rate of interaction of graphite with corrosive gases, but for this purpose one needs to know the reactivity in relation to each gas. We have examined the rates of interaction of some grades of graphite with $\mathrm{CO}_{2}$ over the range $1200-2400^{\circ} \mathrm{C}$ at partial pressures of $\mathrm{CO}_{2}$ of $(0.08-0.34) \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ and total pressures of $\mathrm{Ar}-\mathrm{CO}_{2}$ of $1 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}$.

Published studies on the interaction of carbon with $\mathrm{CO}_{2}$ give very little evidence that can be directly used in engineering calculations, the reasons being that tests at high temperatures do not occur in the purely kinetic region but in the transitional or diffusion region. One can avoid diffusion inhibition most completely by conducting experiments at low pressures, but then the results [1, 2] are difficult to use in calculations when the pressure is several atmospheres or more. In such cases one has to extrapolate the experimental


Fig. 1. Section of oven: 1) upper current lead; 2) input bushing; 3) graphite specimen; 4) graphite tubular heater; 5) insulator; 6) lower current lead; 7) outlet tube. The gas flows along the central channel from top to bottom. results from the range $10^{-6}-10^{-5} \mathrm{~atm}$ to the range $10^{-1}-10 \mathrm{~atm}$. Experiments have been reported [3, 4] for $\mathrm{CO}_{2}$ pressures of $0.1-1.0 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. The effects of diffusion were not completely eliminated, because the rate at which the gas was flowing was comparatively small ( $0.2-0.8 \mathrm{~m} / \mathrm{sec}$ ). In [5], experiments were done with gas flow speeds of $200-500 \mathrm{~m} / \mathrm{sec}$, and the gas flow was heated by an electric arc with a tungsten cathode. Unfortunately, the results from this study are unusable on account of effects from tungsten vapor. We have found that a tungsten cathode gives rise to tungsten vapor that then partially deposits on the graphite and distorts the reaction rate. This is why in [5] low maximum reaction rate of graphite with $\mathrm{CO}_{2}$ was found in the range $1600-1800^{\circ} \mathrm{C}$, although one is indicated by the results of $[1-4,6]$.

The apparatus we used for the experiment consisted of an electric arc heater, a mixer, and an oven. The heater served to heat the argon. In the mixer, the hot argon was mixed with $\mathrm{CO}_{2}$ at room temperature. This gave a mixture of specified composition and temperature. This passed to the oven (Fig. 1), where $\mathrm{CO}_{2}$ reacted with the graphite specimen 3 , which was a 30 mm cylinder with outside diameter 12 mm . The reaction occurred within the axial channel of diameter 3 mm . The flow rate for the gas mixture was designed such that the gas speed within the working channel was on average $200 \mathrm{~m} / \mathrm{sec}$. The temperature of the specimen was measured with an OPPIR-017 pyrometer. A mirror was used to sight the pyrometer through the outlet tube 8 on a hole of diameter 2.5 mm and length $l=15$ mm in the lower end of the specimen. The specimen temperature

[^0]

Fig. 2. Reaction rate $\mathrm{m}\left(\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{sec}\right)$ for VPP graphite in $\mathrm{CO}_{2}$ as a function of temperature $\mathrm{t}\left({ }^{\circ} \mathrm{C}\right)$. Gas pressure $\left(\mathrm{Ar}+\mathrm{CO}_{2}\right) 9.8 \cdot 10^{4} \mathrm{~N}$ $/ \mathrm{m}^{2}(1 \mathrm{~atm})$, flow speed $w=200 \mathrm{~m} / \mathrm{sec}, \mathrm{CO}_{2}$ partial pressure $\left.\mathrm{N} / \mathrm{m}^{2}: 1\right)$ $0.81 \cdot 10^{4}$ 2) $1.51 \cdot 10^{4}$; 3) $2.1 \cdot 10^{4}$; 4) $2.61 \cdot 10^{4}$; 5) $3.46 \cdot 10^{4}$.
Fig. 3. Reaction rate $\mathrm{m}\left(\mathrm{kg} / \mathrm{m}^{2} . \mathrm{sec}\right)$ for VPP graphite in $\mathrm{CO}_{2}$ as a function of temperature $t\left({ }^{\circ} \mathrm{C}\right)$. With calculated allowance for diffusion: 1) from experiment; 2) from (12); $\mathrm{CO}_{2}$ pressures $\left(\mathrm{N} / \mathrm{m}^{2}\right.$ ) at surface of: 3) $1.81 \cdot 10^{4}$; 4) $1.35 \cdot 10^{4}$; 5) $0.9 \cdot 10^{4}$; 6) $0.45 \cdot 10^{4}$.
was controlled by the currents of the tubular graphite heater 4 . When a set temperature has been reached, the argon flow was turned on and the arc was struck. The mixer was supplied with a set flow rate for $\mathrm{CO}_{2}$, and the gas temperature was adjusted via the heater power (we omit the description of gas temperature monitoring). The loss in weight of the specimen during the experiment was determined by weighing with an ADB-200 balance. The running time was measured with a $51-\mathrm{SD}$ clock. The reaction rate m in $\mathrm{kg} / \mathrm{m}$ - sec) was estimated from the loss in weight of the specimen as a ratio to the surface of the working channel and to the running time. The carbon dioxide flow rate was measured before and after the experiment by an RS-3 rotameter. The argon flow rate was established from the supercritical pressure drop at the flow throttle. The calibrations for flow were performed by means of GSB-400 gas meters. The error in measuring the argon flow rate was $\pm 4 \%$, while that for the carbon dioxide was $\pm 6 \%$.

Although the gas flow speed was comparatively high ( $200 \mathrm{~m} / \mathrm{sec}$ ), the reaction rate depended not only on the kinetics of the $\mathrm{C}+\mathrm{CO}_{2}$ reaction but also on the gas mixing rate in the boundary layer, i.e., there was some diffusion retardation. The effects of this were seen in that the concentration of the $\mathrm{CO}_{2}$ directly at the graphite surface $\mathrm{C}_{\mathrm{S}}$ was less than that in the initial gas mixture $\mathrm{C}_{\mathrm{g}}$. To allow for diffusion by calculation we need to know the carbon dioxide concentration that realized directly at the surface $\mathrm{C}_{\mathrm{s}}$, and the reaction rate has to be referred to this concentration, not to $\mathrm{C}_{\mathrm{g}}$. To calculate $\mathrm{C}_{\mathrm{s}}$ we used the method of [7], which is based on the empirical relationship

$$
\begin{equation*}
m=g B \tag{1}
\end{equation*}
$$

The analogy between heat and mass transfer [7] gives

$$
\begin{equation*}
g=\alpha / c_{p} . \tag{2}
\end{equation*}
$$

To calculate $\alpha$ we used the empirical relationship for the inlet part of the tube with a laminar boundary layer (this was the case of a specimen) [8]. The concentration head $B$ was obtained by using the law of conservation for C in the boundary layer [7]:

$$
\begin{equation*}
B=\frac{C_{\mathrm{g}}-C_{\mathrm{s}}}{\frac{\mu_{\mathrm{co}_{2}}}{\mu_{\mathrm{C}}}+C_{\mathrm{s}}} \tag{3}
\end{equation*}
$$

From (1) and (3) we get

$$
\begin{equation*}
C_{\mathrm{s}}=\frac{C_{\mathrm{g}}-\frac{m \mu_{\mathrm{CO}_{2}}}{g \mu_{\mathrm{C}}}}{1+\frac{m}{g}} . \tag{4}
\end{equation*}
$$



Fig. 4. Reaction rate $\mathrm{m}(\mathrm{kg} / \mathrm{m} \cdot \mathrm{sec})$ as a function of temperature $t\left({ }^{\circ} \mathrm{C}\right.$ ) (diffusion effects present) for: 1) pyrographite; 2) MPG-8 (1) graphite for a partial pressure of $2.1 \cdot 10^{4} \mathrm{~N} / \mathrm{m}^{2}$ of $\mathrm{CO}_{2}$ in the initial flow and a speed of 200 m $/ \mathrm{sec}$.

From (4) we calculated the carbon dioxide concentration at the graphite surface in each experiment.

We used artifical polycrystalline graphites of grades VPP and MPB-8 (1), as well as pyrographite of grade UPB-1. The initial material for making the medium-grained VPP graphite (density $1.9-1.95 \mathrm{~g} / \mathrm{cm}^{3}$, graphitization temperature $2800^{\circ} \mathrm{C}$ ) was fired oil coke (filler) and coal sinter (bonding agent). For the finegrained MPG-8 (1) graphite (density $1.8 \mathrm{~g} / \mathrm{cm}^{3}$, graphitization temperature $2800^{\circ} \mathrm{C}$ ), the filler was unfired coke. The pyrographite had a high degree of orientation in the crystallites, the layers of atoms in these lying parallel to the deposition surface. This was responsible for marked anisotropy in many properties of the pyrographite, including the reactivity in oxidation.

The reaction rate for the pyrographite (density $2.2 \mathrm{~g} / \mathrm{cm}^{3}$, production temperature $2100^{\circ} \mathrm{C}$ ) was determined on the end face, i.e., on the surface intersecting the layers of atoms at a right angle.

Figure 2 shows the reaction rate for VPP as a function of temperature for $5 \mathrm{CO}_{2}$ concentrations in the initial gas mixture, $\mathrm{C}_{\mathrm{g}}=9.1 ; 16.6 ; 23 ; 28.6$; and 37.5 wt . \%. These relationships are distorted by diffusion. From (4) we determined the corrections for diffusion. The solid line in Fig. 3 shows the true $m=f(t)$ reaction rates (corrected for diffusion) for $\mathrm{C}_{\mathbf{S}}$ of $5,10,15$, and $20 \mathrm{wt} . \%$, while Fig. 4 shows $m=f(t)$ for $\mathrm{C}_{\mathrm{g}}$ of $23 \mathrm{wt} . \%$ for MPG-8 (1) and pyrographite reacting on the end surface. These relationships were derived for only one $\mathrm{CO}_{2}$ concentration, so we could not introduce corrections for diffusion. Each point on these curves is the mean of not less than 3 runs.

For convenience in using the results in engineering calculation, the experimental relationships (solid lines in Fig. 3) were approximated by an analytical expression (broken lines). The choice of the approximating expression was based on the following concept of the reaction mechanism. It was assumed [1, 9] that the reacting surface had active atoms (mass reaction rate $\mathrm{m}_{\mathrm{a}}$ ) and inactive ones (reaction rate $\mathrm{m}_{\mathrm{n}}$ ). The total reaction rate was

$$
\begin{equation*}
m=m_{\mathrm{a}}+m_{\mathrm{n}} \tag{5}
\end{equation*}
$$

The active atoms are evidently ones with unsatisfied valencies. The tests showed that the reaction rate of VPP in the range of partial pressures of $\mathrm{CO}_{2}$ used was directly proportional to the carbon dioxide pressure, i.e., was directly proportional to the number of collisions of $\mathrm{CO}_{2}$ with the graphite surface $\nu$. We denote the fraction of the reacting surface occupied by active atoms by $\theta$, in which case the nonactive atoms occupy $1-\theta$.

Then we get that

$$
\begin{equation*}
m=G v\left[\varphi_{\mathrm{a}} \theta+\varphi_{\mathrm{n}}(1-\theta)\right] . \tag{6}
\end{equation*}
$$

We assume that the active atoms were transformed to nonactive ones at high temperatures, which may arise from increased thermal mobility, particularly for the active atoms, which are less firmly bound. The final result of motion in the active atoms is that they become incorporated into the hexagonal network in such a way as to be bound by free bonds.

Below $1500^{\circ} \mathrm{C}$, the rate of conversion of active atoms to others is small, and the production of hole defects predominates, which are produced where a carbon atom reacts with $\mathrm{CO}_{2}$. Therefore, at low temperatures the entire reacting surface should be coated only with active atoms and $\theta=1$. Above $2200^{\circ} \mathrm{C}$, the conversion rate is so large that the active atoms formed by $\mathrm{C}+\mathrm{CO}_{2}$ are transformed to nonactive ones before collision with $\mathrm{CO}_{2}$ can occur. Therefore, one assumes that in this case $\theta=0$. In the intermediate range $1500^{\circ} \mathrm{C}<t<220^{\circ} \mathrm{C}$, both species are present and $0<\theta<1$. The relationship between the two species in this temperature range is dependent on the temperature and the frequency of the collision of $\mathrm{CO}_{2}$ molecules with the surface, i.e., from the partial pressure of $\mathrm{CO}_{2}$.

The following is the proportion of the surface occupied by the active atoms as a function of temperature and partial pressure of $\mathrm{CO}_{2}$ (approximating expression):

$$
\begin{equation*}
0=\frac{1}{1-1-\exp \left[D\left(T-T_{\mathrm{g}}\right)\right]}=\frac{1}{1+\exp \left[0.014\left(T-T_{\mathrm{g}}\right)\right]} \tag{7}
\end{equation*}
$$

The $\mathrm{T}_{\mathrm{g}}$ of (7) is itself a function of the partial pressure $\mathrm{p}_{\mathrm{p}}$ of $\mathrm{CO}_{2}$ :

$$
\begin{equation*}
T_{\mathrm{g}}=\left(E p_{\mathrm{p}}\right)^{\frac{1}{31}} \tag{8}
\end{equation*}
$$

When VPP reacts with $\mathrm{CO}_{2}$, the constant E is $28.5 \cdot 10^{-5} \mathrm{deg}^{31} \cdot \mathrm{~m}^{2} / \mathrm{N}$. The temperature factors $\varphi_{\mathrm{a}}$ and $\varphi_{\mathrm{n}}$ are approximated as

$$
\begin{gather*}
\varphi_{\mathrm{a}}=\exp \left(-\frac{B_{1}}{T}\right)=\exp \left(-\frac{27000}{T}\right)  \tag{9}\\
\varphi_{\mathrm{n}}=C T^{2}=1.42 \cdot 10^{-31} T^{2} \tag{10}
\end{gather*}
$$

The laws from the molecular kinetic theory of gases [10] imply that the collisional frequency $v$ for $\mathrm{CO}_{2}$ molecules with unit surface is dependent on the pressure and temperature:

$$
\begin{equation*}
\boldsymbol{v}=F \frac{p_{\mathrm{p}}}{\sqrt{T}} . \tag{11}
\end{equation*}
$$

Substitution of (7), (9), (10), and (11) into (6) gives a final expression for approximating the experimental results:

$$
\begin{align*}
& m=A \frac{p_{\mathrm{p}}}{V T}\left[\frac{\exp \left(-\frac{B_{1}}{T}\right)}{1 \cdots \exp \left[D\left(T-T_{2}\right)\right]}\right] \\
& \left.\div C T^{7}\left(1-\frac{\exp \left[D\left(T-T_{\mathrm{g}}\right)\right]}{1 \cdots \cdot \operatorname{ex}}\right)\right] \tag{12}
\end{align*}
$$

When VPP reacts with $\mathrm{CO}_{2}$, the constant $A$ is $65.6 \mathrm{~kg} \cdot \mathrm{deg}^{1 / 2} / \mathrm{sec} \cdot \mathrm{N}$. Expression (12) can be recommended for use in engineering calculations for VPP reacting with $\mathrm{CO}_{2}$ over the range $1200-2600^{\circ} \mathrm{C}$ at partial pressures of $\mathrm{CO}_{2}$ of (0.05-0.2) $\cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}$.

## NOTATION

| $\mathrm{m}_{\mathrm{a}}, \mathrm{m}_{\mathrm{n}}$ | are the rates of reaction of more and less active carbon atoms, $\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{sec}$; |
| :---: | :---: |
| $\mathrm{C}_{\mathrm{g}}, \mathrm{C}_{\mathrm{S}}$ | are the weight fractions of carbon dioxide in the initial gas mixture and at graphite surface; |
| g | is the mixing rate in the boundary layer, $\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{sec}$; |
| B | is the concentration head; |
| $\boldsymbol{\alpha}$ | is the heat transfer coefficient, $\mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{deg}$; |
| $\mathrm{c}_{\mathrm{p}}$ | is the heat capacity, $\mathrm{J} / \mathrm{kg} \cdot \mathrm{deg}$; |
| $\mu \mathrm{CO}_{2}, \mu_{\mathrm{C}}$ | are the relative molecular and atomic masses of carbon dioxide and carbon; |
| f | is the functional relationship; |
| T, t | are temperatures in ${ }^{\circ} \mathrm{K}$ and ${ }^{\circ} \mathrm{C}$ respectively; |
| $\theta$ | is the fraction of the surface occupied by active C atoms; |
| $\nu$ | is the frequency of $\mathrm{CO}_{2}$ collisions per unit area, $1 / \mathrm{m}^{2}$. sec ; |
| $\mathrm{p}_{\mathrm{p}}$ | is the partial pressure of carbon dioxide at graphite surface, $\mathrm{N} / \mathrm{m}^{2}$; |
| $\varphi_{\mathrm{a}}, \varphi_{\mathrm{n}}$ | are factors expressing dependence of reaction rate on temperature for active and inactive C atoms respectively; |
| A, $\mathrm{B}_{1}, \mathrm{C}$, |  |
| D, E, F | are constants. |

## LITERATURE CITED

1. M. Letort, Revue Universelle des Mines, 16, (ser. 9), No. 6, 255-271 (1960).
2. X. Duval, J. Chem. Phys. , 47, 339 (1950).
3. E. S. Golovina and G. P. Khaustovich, Inzh. -Fiz. Zh. , 7, No. 5 (106-11) (1964).
4. M. D. Malanov and I. A. Yavorskii, Khim. Tverd. Top., No. 5, 91-97 (1969).
5. L. V. Svirida, Thesis, Moscow Chemical Technology Institute (1970).
6. R. F. Strickland-Constable, Carbon, 1, No. 3, 333-338 (1964).
7. D. B. Spalding, Convective Mass Transfer [Russian translation], Énergiya, Moscow and Leningrad (1965).
8. V. P. Isachenko, V. A. Osipova, and A. S. Sukomel, Heat Transfer [in Russian], Énergiya, Moscow and Leningrad (1965).
9. G. Blyholder, J. S. Binford, and H. J. Eyring, J Phys. Chem. , 62, No. 3, 263 (1958).
10. V. F. Nozdrev and A. A. Senkevich, Textbook of Statistical Physics [in Russian], Vysshaya Shkola, Moscow (1965).

[^0]:    Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 23, No. 6, pp. 1064-1070, December, 1972. Original article submitted April 21, 1972.

    > O 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $\$ 15.00$.

